
Week 9 - Monday

 What did we talk about last time?
 (Chaining) hash table implementation
 Maps and sets in the JCF

 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)

 Because the Java gods love us, they provided two main
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type K must have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap

 Let's see some code to keep track of some people's favorite
numbers

Map<String,Integer> favorites = new TreeMap<>();

favorites.put("John", 42); // Autoboxes int value
favorites.put("Paul", 101);
favorites.put("George", 13);
favorites.put("Ringo", 7);
if (favorites.containsKey("George"))

System.out.println(favorites.get("George"));

 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the
important things that you need for a set
 add(E element)
 contains(Object object)

 Let's compare the speed of a tree with the speed of a hash
table
 We can generate 1,000,000 random numbers
 We can add this list of numbers to a TreeSet and to a HashSet
 Then, we can test each one to see if other random numbers can be

found inside

Definitions

 Vertices (Nodes)
 Edges

 If two nodes are connected by an edge, they are adjacent
 The number of nodes adjacent to a particular node is called its

degree

 Labeled
 Weighted
 Colored
 Multigraphs

E

A

D

B

F

C

5
6

4
4

3

5
2

E

A

D

B

F

C
6

3

4

1

 When a weighted graph obeys the triangle inequality, the
direct route to a node is always fastest

1

2

4

3

4

3

5

2
3

Triangle Inequality

1

4

2

3

1

1

25

No Triangle Inequality

 Some graphs have edges with direction
 Example: One way streets
 Reachability?

E

A

D

B

F

C

ONE WAY

 Often we talk about connected graphs
 But, not all graphs have to be connected

 Complete graphs
 Every node is connected to every other
 How many edges in a complete graph with n nodes?

 |E| = 𝑛𝑛(𝑛𝑛−1)
2

= 1
2

(𝑛𝑛2 − 𝑛𝑛) is O(n2)

 We can talk about a part of a graph
 For example, what is the largest complete subgraph in this graph?

E

A

D

B

F

C

 A tree (in the graph sense) is a connected acyclic graph

 A tree does not have to have a root (unlike tree data structures)
 A tree with n nodes will always have n – 1 edges

E

A

D

B

F
C

G

I

H

 A path is a sequence of
nodes connected by edges

 A simple path has no
repeated nodes

 A cycle is a path with at
least one edge whose first
and last node are the same

 A simple cycle is a cycle
with no repeated edges or
nodes (except the first and
the last)

E

A

D

B

F

C

5
6

4
4

3

5
2

7

3

3

 Many practical problems
look at graphs with
weighted edges

 The cost or weight of the
path is usually the sum of
the edge weights

 This path from A to C
costs 5

E

A

D

B

F

C

5
6

4
4

3

5
2

7

3

3

 A tour is a path that visits every node and (usually) returns to its
starting node

 This tour costs 24

E

A

D

B

F

C

5
6

4
4

3

5
2

7

3

3

 A graph is more abstract than a stack or a queue
 But we can still think of some general operations we need

 V()
 Get the number of nodes (vertices)

 E()
 Get the number of edges

 addEdge(v, w)
 Add an edge between node v and node w

 adjacent(v)
 Get a list of nodes adjacent to v

 A graph is generally not like a list or a symbol table
 We usually don't want to keep adding and removing data from

the graph
 Instead, a graph is a set of relationships
 We want to look at a (usually unchanging) graph and

determine various properties of it
 We usually don't care about the efficiency of adding or

removing nodes

 The book mentions four implementations:
 Adjacency matrix
 Array of edges
 Adjacency lists
 Adjacency sets

 We will talk about adjacency matrices and adjacency lists

 The book mentions four implementations:
 Adjacency matrix
 Array of edges
 Adjacency lists
 Adjacency sets

 We will talk about adjacency matrices and adjacency lists

 A simple way of keeping track of the edges in a graph is an
adjacency matrix

 An adjacency matrix is an n x n matrix where n is the number
of nodes

 The number in row i column j is the number of edges between
node i and node j

 Undirected graphs have symmetrical adjacency matrices
 The weakness of an adjacency matrix is that it uses Θ(n2)

space, even for sparse graphs

0

2

4

3

1

0 1 2 3 4

0 0 1 0 0 0

1 1 0 1 1 1

2 0 1 0 1 0

3 0 1 1 0 1

4 0 1 0 1 0

0 1 2 3 4

0 0 1 0 0 0

1 0 0 1 1 0

2 0 1 0 1 0

3 0 0 0 0 1

4 0 0 0 1 0

0

2

4

3

1

0 1 2 3 4

0 0 2 0 0 0

1 2 0 2 1 3

2 0 2 0 1 0

3 0 1 1 1 1

4 0 3 0 1 0

0

2

4

3

1

 Finish representations
 Depth first search
 Breadth first search
 Topological sort
 Connectivity

 Keep working on Project 3
 Keep working on Assignment 4
 Due Friday!

 Read 4.2 and 4.3

	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 4
	Maps in the Java Collections Framework
	JCF Map
	JCF implementation
	Code example
	JCF Set
	Time trials
	Graphs
	What is a graph?
	Adjacency
	Lots of flavors of graphs
	Triangle inequality
	Directed graphs
	Connected graphs
	The other extreme
	Subgraphs
	Trees
	Paths
	Weighted paths
	Tours
	Undirected Graph ADT
	The purpose of graphs
	Implementing the graph ADT
	Implementing the graph ADT
	Adjacency matrix
	Adjacency matrix example
	Directed graph example
	Multigraph example
	Upcoming
	Next time…
	Reminders

