
Week 9 - Monday



 What did we talk about last time?
 (Chaining) hash table implementation
 Maps and sets in the JCF











 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the 
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)



 Because the Java gods love us, they provided two main 
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type K must have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap



 Let's see some code to keep track of some people's favorite 
numbers

Map<String,Integer> favorites = new TreeMap<>();

favorites.put("John", 42); // Autoboxes int value
favorites.put("Paul", 101);
favorites.put("George", 13);
favorites.put("Ringo", 7);
if (favorites.containsKey("George"))

System.out.println(favorites.get("George"));



 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the 
important things that you need for a set
 add(E element)
 contains(Object object)



 Let's compare the speed of a tree with the speed of a hash 
table
 We can generate 1,000,000 random numbers
 We can add this list of numbers to a TreeSet and to a HashSet
 Then, we can test each one to see if other random numbers can be 

found inside



Definitions



 Vertices (Nodes)
 Edges



 If two nodes are connected by an edge, they are adjacent
 The number of nodes adjacent to a particular node is called its 

degree



 Labeled
 Weighted
 Colored
 Multigraphs
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 When a weighted graph obeys the triangle inequality, the 
direct route to a node is always fastest
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 Some graphs have edges with direction
 Example: One way streets
 Reachability?
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 Often we talk about connected graphs
 But, not all graphs have to be connected



 Complete graphs
 Every node is connected to every other
 How many edges in a complete graph with n nodes?

 |E| = 𝑛𝑛(𝑛𝑛−1)
2

= 1
2

(𝑛𝑛2 − 𝑛𝑛) is O(n2)



 We can talk about a part of a graph
 For example, what is the largest complete subgraph in this graph?
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 A tree (in the graph sense) is a connected acyclic graph

 A tree does not have to have a root (unlike tree data structures)
 A tree with n nodes will always have n – 1 edges
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 A path is a sequence of 
nodes connected by edges

 A simple path has no 
repeated nodes

 A cycle is a path with at 
least one edge whose first 
and last node are the same

 A simple cycle is a cycle 
with no repeated edges or 
nodes (except the first and 
the last)
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 Many practical problems 
look at graphs with 
weighted edges

 The cost or weight of the 
path is usually the sum of 
the edge weights

 This path from A to C 
costs 5
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 A tour is a path that visits every node and (usually) returns to its 
starting node

 This tour costs 24
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 A graph is more abstract than a stack or a queue
 But we can still think of some general operations we need

 V()
 Get the number of nodes (vertices)

 E()
 Get the number of edges

 addEdge(v, w)
 Add an edge between node v and node w

 adjacent(v)
 Get a list of nodes adjacent to v



 A graph is generally not like a list or a symbol table
 We usually don't want to keep adding and removing data from 

the graph
 Instead, a graph is a set of relationships
 We want to look at a (usually unchanging) graph and 

determine various properties of it
 We usually don't care about the efficiency of adding or 

removing nodes



 The book mentions four implementations:
 Adjacency matrix
 Array of edges
 Adjacency lists
 Adjacency sets

 We will talk about adjacency matrices and adjacency lists
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 A simple way of keeping track of the edges in a graph is an 
adjacency matrix

 An adjacency matrix is an n x n matrix where n is the number 
of nodes

 The number in row i column j is the number of edges between 
node i and node j

 Undirected graphs have symmetrical adjacency matrices
 The weakness of an adjacency matrix is that it uses Θ(n2) 

space, even for sparse graphs
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 Finish representations
 Depth first search
 Breadth first  search
 Topological sort
 Connectivity



 Keep working on Project 3
 Keep working on Assignment 4
 Due Friday!

 Read 4.2 and 4.3
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