Week 9 - Monday

COMP 2100

Last time

- What did we talk about last time?
- (Chaining) hash table implementation
- Maps and sets in the JCF

Questions?

Project 3

Assignment 4

Maps in the Java Collections Framework

JCF Map

- The Java interface for maps is, unsurprisingly, Map<K, V>
 - K is the type of the key
 - v is the type of the value
 - Yes, it's a container with two generic types
- Any Java class that implements this interface can do the important things that you need for a map
 - get(Object key)
 - containsKey(Object key)
 - put(K key, V value)

JCF implementation

- Because the Java gods love us, they provided two main implementations of the Map interface
- HashMap<K,V>
 - Hash table implementation
 - To be useful, type **K** must have a meaningful **hashCode ()** method
- TreeMap<K,V>
 - Balanced binary search tree implementation
 - To work, type K must implement the compareTo() method
 - Or you can supply a comparator when you create the TreeMap

Code example

 Let's see some code to keep track of some people's favorite numbers

JCF Set

- Java also provides an interface for sets
- A set is like a map without values (only keys)
- All we care about is storing an unordered collection of things
- The Java interface for sets is **Set<E>**
 - E is the type of objects being stored
- Any Java class that implements this interface can do the important things that you need for a set
 - add(E element)
 - contains(Object object)

Time trials

- Let's compare the speed of a tree with the speed of a hash table
 - We can generate 1,000,000 random numbers
 - We can add this list of numbers to a TreeSet and to a HashSet
 - Then, we can test each one to see if other random numbers can be found inside

Graphs

Definitions

What is a graph?

- Vertices (Nodes)
- Edges

Adjacency

- If two nodes are connected by an edge, they are adjacent
- The number of nodes adjacent to a particular node is called its degree

Lots of flavors of graphs

- Labeled
- Weighted
- Colored
- Multigraphs

Triangle inequality

 When a weighted graph obeys the triangle inequality, the direct route to a node is always fastest

Triangle Inequality

No Triangle Inequality

Directed graphs

Some graphs have edges with direction

Example: One way streets

Reachability?

ONE WAY

Connected graphs

- Often we talk about connected graphs
- But, not all graphs have to be connected

The other extreme

- Complete graphs
- Every node is connected to every other
- How many edges in a complete graph with n nodes?

•
$$|E| = \frac{n(n-1)}{2} = \frac{1}{2}(n^2 - n)$$
 is $O(n^2)$

Subgraphs

- We can talk about a part of a graph
- For example, what is the largest complete subgraph in this graph?

Trees

A tree (in the graph sense) is a connected acyclic graph

- A tree does not have to have a root (unlike tree data structures)
- A tree with n nodes will always have n-1 edges

Paths

- A path is a sequence of nodes connected by edges
- A simple path has no repeated nodes
- A cycle is a path with at least one edge whose first and last node are the same
- A simple cycle is a cycle with no repeated edges or nodes (except the first and the last)

Weighted paths

- Many practical problems look at graphs with weighted edges
- The cost or weight of the path is usually the sum of the edge weights
- This path from A to C costs 5

Tours

 A tour is a path that visits every node and (usually) returns to its starting node

This tour costs 24

Undirected Graph ADT

- A graph is more abstract than a stack or a queue
 - But we can still think of some general operations we need
- V()
 - Get the number of nodes (vertices)
- **E**()
 - Get the number of edges
- addEdge(v, w)
 - Add an edge between node v and node w
- adjacent(v)
 - Get a list of nodes adjacent to v

The purpose of graphs

- A graph is generally not like a list or a symbol table
- We usually don't want to keep adding and removing data from the graph
- Instead, a graph is a set of relationships
- We want to look at a (usually unchanging) graph and determine various properties of it
- We usually don't care about the efficiency of adding or removing nodes

Implementing the graph ADT

- The book mentions four implementations:
 - Adjacency matrix
 - Array of edges
 - Adjacency lists
 - Adjacency sets
- We will talk about adjacency matrices and adjacency lists

Implementing the graph ADT

- The book mentions four implementations:
 - Adjacency matrix
 - Array of edges
 - Adjacency lists
 - Adjacency sets
- We will talk about adjacency matrices and adjacency lists

Adjacency matrix

- A simple way of keeping track of the edges in a graph is an adjacency matrix
- An adjacency matrix is an n x n matrix where n is the number of nodes
- The number in row i column j is the number of edges between node i and node j
- Undirected graphs have symmetrical adjacency matrices
- The weakness of an adjacency matrix is that it uses $\Theta(\mathbf{n}^2)$ space, even for sparse graphs

Adjacency matrix example

	0	1	2	3	4
0	0 1 0	1	0	o	0
1	1	O	1	1	1
2	o	1	o	1	Ο
3	o	1	1	O	1
4	O	1	o	1	0

Directed graph example

	0	1	2	3	4
0	0	1	0	0	0
1	o	O	1	1	O
2	o	1	O	1	O
3	o	0	O	O	1
4	0 0 0	0	0	1	0

Multigraph example

	0	1	2	3	4
0	0	2	o	0	0
1	2	O	2	1	3
2	o	2	O	1	Ο
3	o	1	1	1	1
4	0 2 0 0	3	0	1	0

Upcoming

Next time...

- Finish representations
- Depth first search
- Breadth first search
- Topological sort
- Connectivity

Reminders

- Keep working on Project 3
- Keep working on Assignment 4
 - Due Friday!
- Read 4.2 and 4.3